01.05.2023 - Cash Award Rider III Prize winner Mrs. Madhu Mitha's Soln

Given: ABC is a triangle.

O is the orthocentre of $\triangle ABC$.

From the given figure A is the orthocentre

for ΔOBC.

Let
$$\angle BOC = a, \angle OBC = b, \angle OCB = 0$$

$$\angle ECO = 90 - a$$
, $\angle ECB = 90 - b$

$$\Rightarrow$$
 90 - a + 90 - b = c

$$180 - (a+b) = c$$

$$\Rightarrow \angle BAC = c + b$$

$$\angle IQO = \angle IBC = b$$
 (: $IQCB$ is cyclic quardrilateral)

$$\angle OIQ = \angle QCB = C$$
 (IQCB is cyclic quardrilateral)

As
$$\angle PAC = b = \angle PQC$$
 (same segment)

$$\angle PQC = \angle OQR = b$$
 (vertically opp angle)

 \Rightarrow 0Q is angle bisector of $\angle IQR$

As
$$\angle PQC = b \& \angle QCD = c \implies \angle QJC = a$$

$$\Rightarrow \angle DIP = a \Rightarrow \angle DPI = 90 - a$$

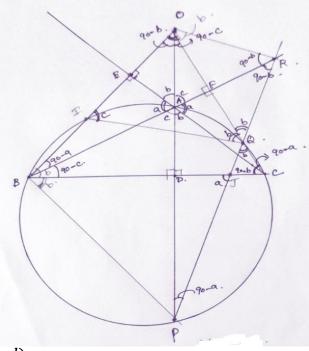
construction: Join OR & IQ , BP

$$\angle OBR = \angle OPR = 90 - \alpha \implies ORPB$$
 is concyclic

$$\angle BOP = 90 - b = \angle BRP$$

consider $\triangle OBA \& \triangle OBR$

$$\angle OBA = 90 - A$$
, $\angle BOA = 90 - b$, $\angle BAO = a + b$



$$\angle PBC = \angle PAC = b \implies \angle PBR = 90 - c + b = \angle POR$$
 same segment

$$\Rightarrow \angle COR = b \text{ as } \angle DOC = 90 - c$$

$$\ln \Delta OFR :: \angle FOR = b \implies \angle ORF = 90 - b$$

Now consider \triangle *OBA* & \triangle *OBR*

$$\angle OBA = \angle OBA = 90 - a \ (common)$$

$$\angle BOA = \angle ORB = 90 - b$$

$$\angle BAO = a + b = \angle BOR = a + b$$

Hence by AA similarity

$$\Delta OBA \sim \Delta RBO$$

$$\frac{OB}{RB} = \frac{AB}{OB} = \frac{OA}{RO}$$

$$\Rightarrow OB^2 = AB \times RB$$